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INTRODUCTION

Mercury intrusion porosimetry is one of only a few analytical techniques that permits an analyst to
acquire data over such a broad dynamic range using a single theoretical model.  Mercury
porosimetry routinely is applied over a capillary diameter range from 0.003 µm to 360 µm— five
orders of magnitude!  This is equivalent to using the same tool to measure with accuracy and preci-
sion the diameter of a grain of sand and the height of a 30-story building.

Not only is mercury porosimetry applicable over a wide range of pore sizes, but also the fundamen-
tal data it produces (the volume of mercury intruded into the sample as a function of applied pres-
sure) is indicative of various characteristics of the pore space and is used to reveal a variety of
physical properties of the solid material itself.

The information that follows falls into three main categories: I) instrument theory and its applica-
tion in data collection, II) information derived from reduced data, and III) presentation of the
information.  A glossary of terms also is included.

Understanding how a fluid behaves under specific conditions provides insight into exactly how a
mercury porosimeter probes the surface of a material and moves within the pore structure.  This
allows one to better understand what mercury intrusion and extrusion data mean in relation to the
sample under test and allows one to understand the data outside of the bounds of the theoretical
model.  It also allows one to make an educated comparison between similar data obtained using
other measurement techniques and theoretical models.

The information contained herein pertains for the most part to the general technique of mercury
porosimetry without regard to a specific instrument manufacturer or model.  However,
Micromeritics’ AutoPore series of porosimeters is used as a reference, particularly when examples
are required and details of data reduction are presented.



4

SECTION I.
THEORY AND METHOD OF

MEASUREMENT

Introduction
Routine operation of an analytical instrument

does not require knowledge of the fundamentals of
instrument theory.  However, an in-depth understand-
ing of the relationship between the probe and the
sample allows one to interpret data outside of the
strict limitations of the theoretical model upon which
data reduction is based.  Although this may have
limited relevance for day-to-day quality or process
control applications, it is of extreme importance in
research work and when developing analysis methods
for control applications.  For these reasons, this
document begins with information about how a non-
wetting liquid (specifically, mercury) reacts in
seeking equilibrium between internal and external
forces at the liquid-solid, liquid-vapor, and liquid-
solid-vapor interfaces.
Fluid Dynamics and Capillary Hydrostatics
Note: Supporting information on fluid dynamics and
hydrostatics can be found on the Internet at sites (1,2,3)
cited in the Reference section of this document.

Consider a drop of liquid resting on a solid
surface as shown in Figure 1.  The underside of the
liquid is in contact with the solid surface.  The
remainder of the surface of the liquid is in contact
with some other fluid above— typically, either its
own vapor or air.  In this configuration, there are
areas of liquid-solid, liquid-vapor, and solid-vapor
interfaces.  There also exists a liquid-solid-vapor
boundary described by a line.

Figure 1. Cross-section of a drop of non-wetting liquid resting
on a solid surface. All interfaces are shown.

There is tension in each interface. The liquid-
vapor interfacial tension is symbolized gl-v, the liquid-

solid gl-s, and the solid-vapor gs-v.  The liquid-vapor
and solid-vapor interfacial tensions also are referred
to as surface tensions.  Surface tension has dimen-
sions of force per unit length and acts tangentially to
the interface.

The angle of contact of the liquid-vapor surface to
the solid-vapor surface at a point on the liquid-solid-
vapor interface characterizes the interfacial tension
present between the solid, liquid, and vapor.
Figure 2 shows five liquids of different surface
tensions resting on the same surface material.  Differ-
ent surface energies cause the liquids to assume
different contact angles relative to the solid surface.
A liquid with low surface tension  (low surface
energy) resting on a solid surface of higher surface
tension will spread out on the surface forming a
contact angle less than 90o; this is referred to as
wetting.   If the surface energy of the liquid exceeds
that of the solid, the liquid will form a bead and the
angle of contact will be between 90o and 180o; this is
a non-wetting liquid relative to the surface.

Figure 2. Various liquids resting on a solid surface. The different
angles of contact are illustrated for wetting and non-wetting
liquids.

Considering any point along the line that de-
scribes the liquid-solid-vapor interface and indicating
all force vectors on that point results in a diagram
similar to those of Figure 3. These illustrations
represent a time sequence (top to bottom) showing
what happens when a liquid drop first is placed on a
horizontal surface until it achieves equilibrium.  One
can imagine the initial, somewhat spherical drop
flattening and spreading over the surface prior to
stabilizing.  The contact angle begins at about 180o,
and the liquid–vapor tension vector at the liquid-
solid-vapor interface points at the angle of contact.
As the contact angle decreases, the horizontal compo-
nent of the liquid-vapor tension vector changes in
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magnitude and, if the contact angle decreases past
90o, the horizontal component changes sign. When
the sum of the solid-vapor tension vector, liquid-solid
tension vector, and horizontal component of the
liquid-vapor tension vector equal zero, equilibrium
occurs and spreading ceases.

Figure 3. A droplet of liquid placed on a solid surface assumes a
contact angle that balances the horizontal force components of
the three tension vectors. For this example, è3 is the angle that
results in equilibrium.

The surface of the liquid at the liquid-vapor interface
assumes a curvature having two radii, r1 and r2, one in
the x-z plane, the other in the y-z plane, where the
solid surface is the x-y plane.  This is another effect
of surface tension. The surface molecules act like an
elastic membrane pulling the surface into the smallest
configuration, ideally a sphere where r1 = r2 = r.
Surface tension contracts the surface and volume until
the internal force Fi per unit area of surface As is in
equilibrium with the external forces on the same
surface element.  Since pressure, P, is force per unit
area (F/A), equilibrium can be expressed in terms of
internal and external pressures.  From the equations
of Young and Laplace for spherical surfaces, the
difference in pressure across the surface is

P” - P’ = γ (1/r1 + 1/r2) =  2γ /r (1)

where P” is the pressure on the concave side, P’ the
pressure on the convex side, g the liquid-vapor
surface tension, and, since it is a spherical surface,
r1 = r2.
Interfacial tensions also cause liquids to exhibit
capillarity. If one end of a capillary tube is forced to

penetrate the vapor-liquid surface from the vapor
side, a wetting liquid spontaneously  enters the
capillary and rises to a level above the external liquid-
vapor interface.  A non-wetting liquid resists entering
the capillary and that a level always below the
external liquid-vapor level.  In other words, a non-
wetting liquid must be forced to enter a capillary.

Why does a non-wetting liquid resist entry into a
capillary?  Inside the capillary and along the line
describing the vapor-liquid-solid boundary, the
liquid-solid interface assumes an angle that results in
equilibrium of forces.  The contributing forces are
those of cohesion between the liquid molecules, and
the force of adhesion between the liquid molecules
and the walls of the capillary.  The liquid-vapor
interface in the capillary (the meniscus) is concave for
a wetting liquid and convex for a non-wetting liquid.
In summary, there are three physical parameters
needed to describe the intrusion of a liquid into a
capillary: a) the interfacial tension (surface tension) of
the liquid-vapor interface, hereafter symbolized
simply by g, b) the contact angle q, and c) the geom-
etry of the line of contact at the solid-liquid-vapor
boundary.  For a circular line of contact, the geometry
is described by pr2, where r is the radius of the circle
or capillary.

Washburn (4) in 1921 derived an equation
describing the equilibrium of the internal and external
forces on the liquid-solid-vapor system in terms of
these three parameters.  It states concisely that the
pressure required to force a non-wetting liquid to
enter a capillary of circular cross-section is inversely
proportional to the diameter of the capillary and
directly proportional to the surface tension of the
liquid and the angle of contact with the solid surface.
This physical principal was incorporated into an
intrusion-based, pore-measuring instrument by Ritter
& Drake in 1945 (5).  Mercury is used almost exclu-
sively as the liquid of choice for intrusion
porosimetry because it is non-wetting to most solid
materials.

Washburn’s equation, upon which data reduction
is based, assumes that the pore or capillary is cylin-
drical and the opening is circular in cross-section.  As
has been stated, the net force tends to resist entry of
the mercury into the pore and this force is applied
along the line of contact of the mercury, solid, and
(mercury) vapor. The line of contact has a length of
2pr and the component of force pushing the mercury
out of the capillary acts in the direction cosq (see
Figure 4), where q is the liquid-solid contact angle.
The magnitude of force tending to expel the mercury
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is
FΕ = 2π rγ  cosθ (2)

where γ  is the surface tension.
An external pressure on the mercury is required to

force its entry into the pore.  The relationship be-
tween force  (F) and pressure (P) is P = F/area.
Solving for force gives

FI = π r2P (3)

Where π r2 is the cross-sectional area of the pore
opening.
Balancing the intrusion and extrusion forces results in
the Washburn equation

-2πrγcosθ = πr2P (3)

or, in terms of diameter D,
-πDγcosθ = (πD2P)/4 (4)

The relationship between applied pressure and the
minimum size pore into which mercury will be forced
to enter is

D = -4γcosθ/P (5)

For a given liquid-solid system, the numerator is
constant, providing the simple relationship expressing
that the size of the pore into which mercury will
intrude is inversely proportional to the applied
pressure.  In other words, mercury under external
pressure P can resist entry into pores smaller than D,
but cannot resist entry into pores of sizes larger than
D. So, for any pressure, it can be determined which
pore sizes have been invaded with mercury and which
sizes have not.

Collecting Experimental Data
A typical mercury intrusion porosimetry test involves
placing a sample into a container, evacuating the
container to remove contaminant gases and vapors
(usually water) and, while still evacuated, allowing
mercury to fill the container. This creates an environ-
ment consisting of a solid, a non-wetting liquid
(mercury), and mercury vapor.  Next, pressure is
increased toward ambient while the volume of
mercury entering larger openings in the sample bulk
is monitored.  When pressure has returned to ambient,
pores of diameters down to about 12 mm have been
filled.  The sample container is then placed in a
pressure vessel for the remainder of the test. A
maximum pressure of about 60,000 psia (414 MPa)
is typical for commercial instruments and this pres-
sure will force mercury into pores down to about
0.003 micrometers in diameter.  The volume of
mercury that intrudes into the sample due to an
increase in pressure from Pi to Pi+1 is equal to the
volume of the pores in the associated size range ri to
ri+1, sizes being determined by substituting pressure
values into Washburn’s equation, Eq. 5.
The measurement of the volume of mercury moving
into the sample may be accomplished in various
ways.  A common method that provides high sensitiv-
ity is to attach a capillary tube to the sample cup and
allow the capillary tube to be the reservoir for mer-
cury during the experiment.  Only a small volume of
mercury is required to produce a long ‘string’ of
mercury in a small capillary.  When external pressure
changes, the variation in the length of the mercury
column in the capillary indicates the volume passing
into or out of the sample cup.  For example, a capil-
lary of 1 mm radius requires only 0.03 cm3 of mer-
cury to produce a mercury column 1 mm in length.
Therefore, volume resolution of 0.003 cm3 easily
could be obtained visually from a scale etched on the
capillary stem.  However, electronic means of detect-
ing the rise and fall of mercury within the capillary
are much more sensitive, providing even greater
volume sensitivity down to less than a microliter.
The measurement of a series of applied pressures and
the cumulative volumes of mercury intruded at each
pressure comprises the raw data set.  A plot of these
data is called the intrusion curve.  When pressure is
reduced, mercury leaves the pores, or extrudes.  This
process also is monitored and plotted and is the
extrusion curve.  According to the shape of the pores
and other physical phenomena, the extrusion curve
usually does not follow the same plotted path as the

Figure 4. Capillary action of a wetting and non-wetting liquid
relative to the walls of a capillary. The g indicates the direction
of the interfacial tension (force) vector.
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intrusion curve.  Therefore, the intrusion curve and
extrusion curve contain different information about
the pore network.
When to collect the data point is an important consid-
eration when measuring intrusion and extrusion
characteristics.  Since the intrusion process involves
moving a mass of mercury into a confined pore
space, the process is not instantaneous as exemplified
by the Hagen-Poiseuille law

Q = V/t = (πr4/8η)(∆P/l) (6)

where Q = flow of the liquid, V the volume of liquid, t
time, r the capillary radius, η the liquid viscosity and
∆P/l the pressure drop per unit length of capillary.

However, long and tortuous pore channels result
in smaller Q values, therefore requiring more time to
fill the same volume as would be the case for pore
systems having higher Q values.  To obtain highly
resolved and highly accurate data, the intrusion
process must be allowed to equilibrate before chang-
ing pressure and probing the next smaller-sized pore
class.  Expressed another way, high-resolution data
collection, particularly in the small pore size range,
requires a pressure step, that is, pressure is raised to
the next pressure, then held until flow ceases.  Scan-
ning mode, in which pressure is continually changed,
is best employed for very large pores or for screening
purposes.

Measurement Transducers
From the above discussion, it is clear that a

mercury porosimeter measures only applied pressure
and the volume of mercury intruded into or extruded
from the sample bulk.  Pressure measurements are
obtained by pressure transducers that produce an
electrical signal (current or voltage) that is propor-
tional to the amplitude of the pressure applied to the
sensor.  This analog electrical signal is converted into
digital code for processing by the monitoring com-
puter.

The transducer that detects mercury volume is
integrated into the sample holder assembly as previ-
ously exemplified and shown in Figure 5.

Figure 5. Cross-section of a penetrometer in which pressure has
forced some mercury into the pores of the sample and about
50% of the stem capacity has been used.

The sample cup has a capillary stem attached and
this capillary serves both as the mercury reservoir
during analysis and as an element of the mercury
volume transducer. Prior to the beginning of each
analysis, the sample cup and capillary are filled with
mercury.  After filling, the main source of mercury is
removed leaving only the mercury in the sample cup
and capillary stem, the combination being referred to
as the penetrometer. Pressure is applied to the mer-
cury in the capillary either by a gas (air) or a liquid
(oil). The pressure is transmitted from the far end of
the capillary to the mercury surrounding the sample in
the sample cup.

The capillary stem is constructed of glass (an
electrical insulator), is filled with mercury (an electri-
cal conductor), and the outer surface of the capillary
stem is plated with metal (an electrical conductor).
The combination of two concentric electrical conduc-
tors separated by an insulator produces a co-axial
capacitor.  The value of the capacitance is a function
of the areas of the conductors, the dielectric constant
of the insulator, and other physical parameters.  In the
case of this particular capacitor, the only variable is
the area of the interior conductor as mercury leaves
the capillary and enters the sample voids and pores,
or as it moves back into the capillary when pressure is
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reduced.   This is mechanically analogous to a
mercury thermometer in which case mercury moves
in and out of a calibrated capillary from a large bulb
at one end. A small volume of mercury entering or
leaving a small capillary causes the length (and area)
of the mercury column to change significantly, thus
providing volume-measuring sensitivity and resolu-
tion.  In the case of the thermometer, the change in
volume is proportional to the change in temperature
by the coefficient of volumetric expansion of mer-
cury.

The capacitance value of the stem is monitored by
a capacitance detector that, similar to the pressure
transducer electronics, produces an electrical signal
that is proportional to capacitance.   Capacitance
measurements are transformed into volume measure-
ments by knowledge of the diameter of the precision
capillary and the equation governing coaxial capaci-
tors.

SECTION II.

OBTAINING INFORMATION ABOUT THE
SAMPLE MATERIAL

PART A. Information Obtained Using Volume
and Mass Measurements Only

Part A discusses characteristics of the sample that
can be deduced directly from the intrusion volumes
combined with physical properties of the sample and
system. Detailed Pressure data are not required, nor is
Washburn’s equation.

Total Pore Volume
Total pore volume is the most direct determina-

tion of a physical property by mercury intrusion,
involving only the volume of mercury entering the
sample bulk and not requiring Washburn’s equation
or a pore model.  At the lowest filling pressure,
intrusion is considered nil and no pore volume of
interest has been filled. Pressure is increased to
maximum; at this pressure mercury has been forced
into all voids of the sample accessible to the mercury
at maximum pressure.  The volume of mercury
required to fill all accessible pores is considered the
total pore volume.  Dividing this value by the mass of
the sample gives total specific pore volume in units of
volume per unit mass.

Material Volume and Density
The concepts of volume and density seem simple at
first consideration.  However, they become complex
when an attempt is made to rigorously define each
term.  The Glossary section of this document con-

tains various definitions.  For a more complete
discussion of density and volume, refer to
Micromeritics’ publication, ”Volume and Density for
Particle Technologists.”(6)

Bulk and Envelope Volume and Density:  Bulk
volume (as applied to a collection of pieces) is the
sum of the volumes of the solids in each piece, the
voids within the pieces, and the voids among the
pieces. Envelope volume (as applied to a single
piece) is the volume of a particle or monolith as
would be obtained by tightly shrinking a film around
it.  Therefore, it is the sum of the volumes of the solid
components, the open and closed pores within each
piece, and the voids between the surface features of
the material and the close-fitting imaginary film that
surrounds the piece. Bulk and skeletal densities
follow from dividing the respective material mass by
volume.

Mercury porosimetry tests in general incorporate
the majority of steps in Archimedes’ displacement
method for volume determination.  Including the
remaining steps requires additional weights otherwise
not necessary for pore characterization.  Examples of
density determinations are given below.  Powdered
and solid (monolithic) forms of sample materials are
considered separately because of a slight but impor-
tant difference between volumes determined for a
solid object compared to that of a finely divided
powder.

Assume, then, that two samples are to be ana-
lyzed, one a solid piece of irregularly shaped mate-
rial, and the other a quantity of powder, both of
known mass.  Prior to the tests, empty sample con-
tainers are weighed, filled with mercury, and then
weighed again.  From these measurements and the
density of mercury, the exact volume of each con-
tainer is calculated.  After the samples have been
loaded into the containers and the containers refilled
with mercury, the mercury surrounds the samples.
Being a non-wetting liquid with only atmospheric
pressure applied, it does not enter small indentions,
cracks, and crevices on the surface nor into pores
within the structure of the material.  In the case of
fine powders, mercury does not invade the interpar-
ticle voids.

The weight of the surrounding mercury in each
case is calculated from values obtained by reweighing
the filled sample container and subtracting the weight
of the empty sample container and sample. Mercury
volume follows from density and weight. The differ-
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ence in volumes of mercury in the sample container
before and after introducing the sample is equal to the
bulk volume (in the case of the solid piece), or
envelope volume (in the case of the powder).
Whether the term ‘bulk’ or ‘envelope’ applies de-
pends on the sample form (powder, single piece,
granules, etc.) as well as the applications-specific
definitions of these terms.

Skeletal and True Volume and Density: A pore
may have access to the surface (open pores), or may
be isolated from the surface (closed or blind pores).
Skeletal volume, as applied to discrete pieces of solid
material, is the sum of the volumes of the solid
material in the pieces and the volume of closed pores
within the pieces. True volume is the volume only of
the solid material, excluding the volume of open
pores and closed pores. Skeletal and true densities
follow from dividing the respective  material mass by
volume.

If a sample contains both open and closed pores,
at maximum applied pressure, only open pores in the
sample are filled with mercury.  The volume of
mercury intruded into the pores subtracted from the
bulk or envelope volume of the sample gives its
skeletal volume.  The volume measured is the true
volume if the sample contains no blind pores and all
pore space is filled.  Finely grinding materials with
closed pores (when appropriate) may allow true
volume and density also to be determined.  If so, then
the volume measurements obtained prior to and after
grinding provide a means for obtaining the total
volume of closed pores by subtracting true volume
from skeletal volume.

If  the sample contains pores smaller than the
minimum pore size into which mercury can intrude at
maximum instrument pressure, then skeletal and true
volumes cannot be obtained accurately. This may
represent a small, perhaps insignificant, volume
percent when using an instrument capable of generat-
ing 60 kpsia (414 MPa). For these samples, volumes
determined by gas pycnometry are smaller than those
obtained by mercury porosimetry because gases such
as helium and nitrogen can penetrate into micropores
where mercury cannot.  The difference in skeletal
density obtained by mercury porosimetry and by gas
pycnometry serves as a good approximation of pore
volume in the range from essentially the size of the
gas molecule to the lower size represented by the
highest pressure obtained by mercury porosimetry.

When measuring volume (density) by mercury

porosimetry, it should be recognized that the value
obtained is pressure-dependent up to the pressure at
which all particle voids and pores are filled. The
pressure required for total pore filling may be only
several thousand psi, but may require the full pressure
range of the instrument. At higher pressures, one must
be aware of material compressibility, which will
reduce the reported skeletal volume.  More informa-
tion about compressibility is presented in a subse-
quent section.

Interstitial Void Volume
Interstitial void volume, sometimes called inter-

particle void, is the space between packed particles.
Such voids were taken into consideration in the
definition of envelope volume, above.  These voids
typically are larger than voids in the individual
particles and therefore fill at lower pressure.  Being
larger, they also hold more mercury than particle
pores.  This means that the rate of intrusion of
mercury with increasing pressure is greater when
filling the interstitial void than when filling pores
within the sample material.  The completion of
interparticle void volume filling is indicated by an
abrupt change in filling rate observed on the intrusion
curve.  The total volume of the interparticle voids is
the volume of mercury intruded at the inflection
point.

Percent Porosity and Percent Porosity Filled
Knowing the bulk or envelope volume (VB or VE)

of a sample and total porosity (VPt) allows percent
porosity to be calculated by the simple relationship

P% = (VPt/V*) x 100%. (7)

The type of volume used in the equation for V*

determines what volumes are considered  ‘porosity.’
Volumes associated with interstitial voids and with
porosity can be differentiated as discussed previously.

In some applications, it is desired to know what
percent of total porosity has been filled (or remains
unfilled, or has emptied) at a certain pressure or pore
size boundary. This information also is readily
available from mercury porosimetry data since, once
total intrusion volume (total porosity) is known, the
cumulative intrusion scale can be represented in units
of percent porosity.

PART B.  INFORMATION OBTAINED BY APPLICATION

OF WASHBURN’S EQUATION

The characteristics of a sample discussed in Part
A, with the exception of percent porosity filled at a
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pore size boundary, are not dependent on any geo-
metrical pore model.  When the sizes of pores are to
be determined and associated with volume determina-
tions, Washburn’s equation and a pore model are
required.  Characteristics that require models are
discussed in Part B.

Pore Volume Distribution by Pore Size
Rather than pumping the system immediately to
maximum pressure as in the example of obtaining
total pore volume, pore size distribution analyses
achieve maximum pressure by a series of small
pressure steps or by controlled-rate scanning. In step
mode, pressure and volume are measured after
intrusion (or extrusion) equilibration is achieved. The
cumulative intrusion volume of mercury at each
measured pressure is determined by subtracting the
volume of mercury remaining in the stem from the
original volume.

Applying Washburn’s equation to each measured
pressure provides the pore size associated with each
pressure, that is, the pore size class interval bound-
aries. In the great majority of cases and in the form of
Washburn’s equation derived and presented as Eq. 5,
the pore is considered to be a right circular cylinder.

The volume of mercury intruded as the result of each
pressure step is the difference between the respective
cumulative intrusion volumes.   This value and the
associated pressure (pore size) values yield a table of
pore size intervals and incremental volumes associ-
ated with each interval.  This is sufficient data for a
bar graph of pore volume versus size class.  For a
continuous curve, only a single size value is required
to represent the size class. This value may be the
upper or lower size boundary or some representative
size between the two boundaries (the average size, for
example).

Pore Area and Number of  Pores
Since the Washburn model is based on cylindrical
capillaries, the pore shape is assumed to be cylindri-
cal with a circular opening.  Therefore, the equivalent
cylindrical pore size is obtained from the data.  In
principle, any pore opening geometry (cavity cross-
section) is applicable as long as the equation is known
for equilibrium between the external pressure applied
over the spanned area of the opening and for the
resistive force produced by interfacial tension around
the perimeter of the opening (the solid, liquid, vapor
interface).

A cylindrical pore model is used almost exclu-

sively in practice.  From this model, pore wall area is
easily determined from incremental pore volume VIii

by the equation

AWi = Di/4VIi (8)

where Di is the representative diameter for the size class
(the average class diameter, for example). A certain in-
cremental pore volume and diameter implies a pore
length L since the relation between the length, diam-
eter, and volume of a cylinder is

L = 4V/πD2 (9)

If a representative diameter is combined with a
representative pore length (thickness of the sample,
for example), then the number of pores in the size
range can be calculated because each pore would
have a specific volume, VPi, and the total volume of
all pores in the class is known.  The number of pores
of a specific size, then, is

N =VIi/VPi (10)

Rootare and Prenzlow (7) take a modeless
approach to obtaining surface area information from
mercury porosimetry curves.  Their calculations begin
with an expression of the reversible work required to
immerse in mercury a unit area of a solid surface.
That expression is simply the difference in the surface
tension of the solid-vacuum interface (γ s-v) and the
interfacial tension of the solid-mercury interface (γ s-l),
which reduces to γ L cos θ, where γL is the surface free
energy of liquid mercury in vacuo and θ is the contact
angle between the mercury and solid surface.  Differ-
entiation over area  (a) gives

dW =  γL cos θ da (11)

In a porosimeter, the work is supplied by pressure P
forcing a volume V of mercury into a pore, therefore
work is PdV.  Substitution into Eq. 11 and subsequent
integration yields

a = -∫ PdV ( γL cos θ )−1 (12)

PART C. INFORMATION OBTAINED BY APPLICATION OF

SPECIAL OR MULTIPLE MODELS

Mercury porosimetry has been employed for decades
to characterize sample materials in regard to the
physical parameters described in Parts A and B,
above.  More recently, theoretical models of mercury
intrusion and extrusion mechanisms have been
introduced allowing additional information about the
sample material to be extracted.  These methods of
data reduction are the subject of this part.
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Particle Size Distribution
In 1965, Mayer and Stowe (8) published a paper

expanding the work of Frevel and Kressley (9) on the
mercury breakthrough pressure required to penetrate a
bed of packed spheres and the subsequent filling of
the interstitial void. This work relates particle size to
breakthrough pressure.  Later work by Pospech and
Schneider (10) led to a method for determining the
size distribution of particles from the intrusion data in
the range of interstitial filling.

This method is based on models of penetration of
fluids into the void spaces of a collection of uniform
solid spheres packed in a regular manner. The forces
resisting penetration of mercury between particles
originates from interfacial tensions just as with
penetration of mercury into capillaries.  However, the
geometric model is considerably different and
therefore is not described by the Washburn equation
of equilibrium. The simplest geometry exists when
the particles are monosized spheres and the shapes of
the void necks and void cavities of such a system are
exemplified in Figure 6.   The figure shows the range
of angular relationships between spheres centered at
W, X, Y, and Z in a plane section.

Figure 6. Ordered packing of spheres with cross-
sectional view of the shapes of mercury filling the
resulting voids. Also shown is the 3-dimensional
shape of the void in a rhombohedral packing.

Regardless of the actual particle shape, the
particle size distribution derived from this method is
the size distribution of spheres that, when applied to
the mathematical model, most closely reproduces the
experimental penetration data.  The size unit, then, is
‘equivalent spherical size.’ How closely the results
compare to that obtained by other methods of particle
sizing depends largely on how closely the sample
material conforms to the model of closely packed
spheres.

Pore Cavity to Pore Throat Size Ratio
For many materials, porosity is composed of a

network of interconnected voids of various sizes.
Small pores at the surface may connect to large pores
within the material; the openings are referred to as
pore throats and the spaces within the material as pore
cavities. There are numerous methods for extracting
pore shape information from mercury injection data.
These often are based on specific pore models and
may require some knowledge of the pore structure in
order to select the appropriate method. A few of these
methods are discussed here.

Most pore shape evaluation methods are based on
the hypothesis that hysteresis in mercury porosimetry
is attributable to pore shape. Indeed, if each pore
were a simple, uniform cylinder and the intrusion and
extrusion contact angles are known and applied, one
would expect there to be no hysteresis since the
intrusion and extrusion processes both are controlled
by the same mechanism and known parameters.
However, hysteresis loops of various shapes often are
observed and many do not close when pressure is
reduced from some elevated value to ambient.  This
is attributed to large cavities being interconnected by
smaller pore throats. This applies even if the shape of
the throats and cavities are cylindrical. Although large
pores fill at low pressures, a large cavity connected to
the surface by a small throat cannot fill until the
pressure is sufficient to fill the smaller connecting
throat.  Upon decompression, the small throat emp-
ties at the same pressure at which it filled, but the
large cavity behind the throat remains filled because
the internal forces in this volume of relatively large
radius is insufficient to overcome the external forces
at the current pressure (see Section I).  The pore will
empty at the lower pressure associated with its radius,
or it may not empty at all if the path to the surface is
composed of pores of inappropriate sizes.

So, intrusion of mercury into a cavity is con-
trolled by the size of the pore throat radius while the
radius of the cavity and its connectivity controls
extrusion of mercury from the cavity.  A way to
characterize the relationship between pore throat and
cavity existing in a material is by the ratio of these
sizes and is calculated in the following manner.

Assume that at some pressure Px relating to pore
size Rx that Vx cm3 of mercury is contained by pores
in the sample. Intrusion continues to pressure Pz at
which all pores are filled (Vz). Then, pressure is
reduced and extrusion begins.  If there is hysteresis
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(as is typical), pressure must fall to a value lower than
Px, say Pw, before sufficient mercury extrudes to
reduce the volume of mercury within the sample
again to Vx.   The pore size that relates to Pw is Rw,
and this is the cavity size that is paired with throat
size Rx,; the pore throat to pore cavity size ratio, then,
is Rx/Rw.

Intrusion volume is expressed in terms of fraction
of total porosity filled in order to normalize data for
sample-to-sample comparisons.  The fraction of
porosity filled is the ratio of the cumulative intrusion
volume at any point to the total intrusion volume.
The pore cavity to pore throat ratio method does not
relate the cavity size to the size of the throat through
which it was filled; rather it relates the fraction of
porosity filled to the pore sizes that control this state
during intrusion and extrusion.

The Distribution of Pore Cavity Sizes Associated
With a Pore Throat Size

Reverberi and Ferraiolo (11) devised a means by
which to determine the distribution of cavity sizes
connected to a pore throat of a specific size. They
constructed a pore model that relates hysteresis solely
to the existence of inkwell- shaped pores.  An
inkwell-shaped pore has a cylindrical pore throat
(radius R1) that connects to a larger cylindrical pore
cavity (radius R2).

The test is performed first by allowing intrusion
to occur up to maximum pressure Pz, thereby filling
all throats and cavities from size Rz (at minimum
pressure) to Ra (at maximum pressure) with Vz units
of mercury.  The intrusion curve is a record of
cumulative intrusion at each point in the pressure
ramp.  Pressure is then lowered a few percent to some
sub-maximum pressure Py that corresponds to capil-
lary size Ry.  This empties only pores and pore
cavities with diameters between Rz and Ry. The
difference in the cumulative intrusion observed at Py

on the intrusion branch and Py on the extrusion branch
is the volume of cavities with sizes greater than Ry.
Pressure is increased again to Pz.  The intrusion curve
will not take the same path as the original intrusion
curve if mercury was trapped since these pores
already are filled.  Pressure is reduced from Pz to a
pressure Px where Px<Py<Pz. The total intruded
volume remaining in the pore space is recorded.  Pore
throats and cavities in the size range Rx to Rz empty.
The pressure is raised again to maximum.  The
intrusion path retraces neither path Pa to Pz nor path Py

to Pz because a different set of pores is being filled.

The pressure increased again to maximum,
reduced to Pw, raised to maximum, reduced to Pv, and
so on until the range of interest is sampled.  The data
thus obtained are reduced to yield a three-dimensional
data set providing the distribution of pore cavity
volumes versus cavity sizes behind each of a series of
pore throat sizes.

Material Permeability and the Conductivity
Formation Factor

Permeability is the inherent ability of a porous
medium to transmit a fluid and is a property of the
material. It relates to porosity in the sense that it is the
“proportionality constant” linking fluid flow rate to
applied pressure across a porous medium.   There
have been many attempts over the years to relate
permeability to some relevant microstructurally-
defined length scale. (12) The work of Katz and
Thompson (13, 14) provides an important contribu-
tion to mass transport studies in facilitating the
prediction of fluid permeability of materials from
mercury injection data.

Katz and Thompson introduced two expressions
for calculating absolute permeability (k) using data
from a single mercury injection capillary pressure
curve.  The equations were derived from percolation
theory. The first provided rigorous results by incorpo-
rating the measured conductivity formation factor
(conductance ratio) σ/σo as a parameter. Here σ is the
rock conductivity at characteristic length Lc, and σo

the conductance of brine in the pore space.  Mercury
porosimetry data are used to determine the character-
istic length Lc of the pore space. The equation for
permeability is

k = 1/226(Lc)2 σ/σo (13)

The second equation provides for an estimation of
σ/σo to be obtained from the same mercury intrusion
data as were used to determine k.  This equation, in
addition to Lc

, requires the value of the length (pore
size) at which hydraulic conductance is maximum
(Lmax), and the fraction of total porosity φ filled at Lmax

(symbolized by S(Lmax)).  The equation is

   k = (1/89)(Lmax)2(Lmax/Lc)φS(Lmax) (14)

Although appearing similar, the Katz-Thompson
expression for conductivity formation factor is
fundamentally different from the classical Archie’s
law.  For Equations 13 and 14, k is reported in units
of millidarcys and has fundamental units of area.

As pressure is increased, mercury is forced to
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invade smaller and smaller pore openings in the
permeable material.  Ultimately, a critical pressure is
reached at which the mercury spans the sample.  This
conduction path is composed of pores of diameter
equal to and larger than the diameter calculated from
the Washburn equation for the critical pressure. This
diameter, Lc in equation 13, is a unique transport
length scale and dominates the magnitude of the
permeability.

To obtain this characteristic length Lc from the
mercury intrusion data set, pressure is determined at
the point of inflection in the rapidly rising range of
the cumulative intrusion curve. This inflection point
was determined experimentally by Katz and Thomp-
son to correspond closely to the pressure at which
mercury first spans the sample and the point at which
percolation begins.  This pressure point is defined as
the threshold pressure (Pt). The value of Lc is the pore
diameter (or length scale) calculated from the
Washburn equation for Pt.  Having obtained Lc is
sufficient if σ/σo has been measured independently
and is known.

To use the second form of the equation, which
estimates σ/σo,  the cumulative intrusion volume Vt at
threshold pressure (Pt) is determined.  Then, the
quantity Vt is subtracted from each intrusion volume
value at each pressure in the data set from threshold
pressure to maximum pressure.  Data points prior to
the threshold pressure are excluded. The net volume
(Vc - Vt in cm3) times the diameter-cubed
(micrometer3) for the corresponding pressure is
calculated as a function of pore diameter
(micrometers).  This is the hydraulic conductance
function, or permeability path.  The pore diameter
corresponding to the maximum y-value is Lmax, the
cumulative volume of mercury intruded at this
diameter is VLmax.  The fraction S(Lmax) is calculated as
the ratio of VLmax/Vt and is the fractional volume of
connected pore space composed of pore width of size
Lmax and larger.

For both data reduction methods (using entered
values for σ/σo or calculating an estimated σ/σo), the
equations depend on a judicious choice of the point at
which inflection occurs and the resulting values of
threshold pressure (Pt) and threshold volume (Vt).
The computer program performs the first approxima-
tion and the initial value for permeability is reported
on this basis.  However, the intrusion curve should be
inspected and the choice of the appropriate inflection
point confirmed. There are cases in which there are

multiple inflection points and a judgment is
needed to determine which most likely
represents the onset of percolation, or if the
method is even applicable to the sample.
Therefore, permeability calculations usually
require a second pass through the data
reduction routine using adjusted param-
eters.  It should be noted also that a change
in permeability value would affect the re-
ported value for tortuosity.

In the literature, one frequently finds references
to the K-T method, both in regard to determining
permeability by mercury injection, and to their
method of identifying the percolation region, the
optimum path for permeability, and the threshold
pressure from mercury intrusion data.  These param-
eters are in other methods discussed in this document.

Pore Fractal Dimensions

Many natural and man-made materials have
complex pore structure that changes only in size, but
not in geometrical shape, over a range of pore
volumes.   This type of geometry has the quality of
‘self-similarity’ and can be described in terms of its
fractal dimensions.

Angulo, Alvarado, and Gonzalez (15) published a
method by which mercury porosimetry data can be
reduced to extract information about the fractal
characteristics of the pore space of the sample
material.  For their method to be applicable, there
must be one or more linear regions on a log-log plot
of intrusion volume versus pressure.  The plot
describes the volume scaling of the pore space and
linearity implies that pore volume has fractal dimen-
sions. The equation describing a linear region is
determined and the value of the fractal dimension of
the material in the linear range is extracted from the
inverse log of the equation.  Two regions of linearity
are found in the data from some materials; this is
attributed to there being two different processes
related to pore space. The lower pressure linear
region occurs during  ‘backbone formation’ when
mercury is finding a conductivity path through the
pore structure.  The adjacent linear region at higher
pressure occurs during ‘percolation’ where flow
through the medium is optimized.

For fractal analysis to be of value, the implica-
tions of fractal geometry must be appreciated. For
anyone unfamiliar with fractal geometry, a simple,
instructive exercise can be performed.  First, draw a
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square of dimension L, where L is any dimension.
The square will be the conserved geometry, so every
sub-element also will be a square, only smaller.
Divide the original square into four squares of equal
size (L/2 x L/2).  Then, remove any one of the small
squares.  Divide each of the remaining three squares
into four smaller squares (L/4 x L/4).  From each of
the three new groups, remove one square.  Continue
this process n times, where n is a positive integer.
The result is a set of very small squares forming
larger squares, all but the smallest having voids of
various sizes.  The dimension of the smallest square
from which all other squares are composed, is called
the length scale.  The dimension of the smallest
square is calculated using the formula L/2n, where n is
the number of times the original square was divided.
The numerator is the original length of a side of the
square, and the number 2 in the denominator is the
number of equal parts into which the original length
was divided.  The number N of remaining squares at
the end of the exercise equals 3n, where the number 3
is derived from the number of remaining squares after
each divide-and-discard step.

In general, a self-similar set of this type is ex-
pressed by the equation

N(δ) = δ-D (15)

where N(δ) is the number of elements of dimension
δ, δ is the smallest dimension after n divisions, and D
is the fractal dimension.

Taking the logarithm of this equation provides a
solution for D, which is

D = log[N(δ)]/log(1/δ) (16)

For the example given, N(δ) = 3n and δ = 1/2n.
Substituting these values into equation 10 gives

D = log(3n)/log(2n)

= nlog(3)/nlog(2)

= log(3)/log(2) = 1.58 (17)

Note that the fractal dimension does not depend
upon the number of iterations, n.  Ultimately, it
depends upon the fraction by which the length scale is
divided and the number of remaining elements after
each iteration.  The total number of elements and the
length scale, however, are functions of n.

Following the example above, the total area of the
remaining object is equal to the number of minor
elements times the area of each, or

A = N(δ) δ2 (18)

Since N(δ) = δ-D,

A = δ(2-D) (19)

where D in this case is the area fractional dimension.

An expression for volumetric fractal dimension is
derived as above, yielding

V = δ(3-D) (20)

If a sample has pore space that is fractal, then the
volume of mercury intruded with increasing pressure
also will scale as a fractal. Using a pressure scale
rather than a length scale, and subtracting the thresh-
old pressure Pt from the capillary pressure P, Equa-
tion 14 is expressed as

V = (P-Pt)(3-D) (21)

Taking the logarithm of this equation gives

log(V) = (3-D)log(P-Pt) (22)

where (3-D) is the slope of the log(V) vs. log(P-Pt)
plot.  Pt is the pressure identified by Katz and Th-
ompson (see the section on permeability) as the
pressure at which mercury first percolates and spans
the porous medium.

The equations developed above are based on
regular geometry, as are most models, the cylindrical
pore model of the Washburn equation, being an
example. The application of this data reduction
method indicates, by the occurrence of a linear range
on the log(V) vs. log(P-Pt) plot, that pore volume
filling is indicative of pores of fractal dimension.
Reduction of data in that area provides the fractal
dimension.

Fractal dimensions often are compared with other
effects of porosity to test for correlation. For ex-
ample, materials with fractal geometry often have
quite different fluid transport characteristics than do
materials having random geometry.  Therefore, fractal
dimensions can be important physical parameters
when studying reservoir rocks and catalysts and other
materials through which fluid must flow.  The fact
that the porosity has or does not have fractal geom-
etry also may be indicative of the physical processes
that formed the material.

In practice, determinations of the fractal dimen-
sions of the backbone formation and percolation
regions are accomplished after the log(V) vs. log(P-
Pt) plot has been examined and the boundaries of the
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linear regions identified.  Another variable that may
require adjustment after the analysis is Pt, the thresh-
old pressure.  Since these determinations only can be
made after seeing certain reduced data, parameter
adjustments and a second pass through the data
reduction routine is required, this time only producing
the reports on which changes are expected.

Pore Tortuosity and Tortuosity Factor

The terms tortuosity and tortuosity factor express
two different characteristics of a material.  Tortuosity
is the ratio of actual distance traveled between two
points to the minimum distance between the same
two points. Tortuosity factor is commonly used in the
area of heterogeneous catalysis and is the ratio of
tortuosity to constriction.

The tortuosity factor characterizes the efficiency
of diffusion of fluids through a porous media.
Diffusion-controlled processes are of particular
importance in catalysts where the solid support
usually contains a pore network with pores ranging
from micro- through to macropores. The manner in
which pores interconnect can have a profound effect
on the accessibility of reactants to the active sites and
on the removal of products.

Also, characterization of the pore structure,
including tortuosity, of porous filtration membranes
such as microfiltration and ultrafiltration membranes
is an important determination. Modeling the transport
of contaminants through soil or other porous matrices
also depends on knowledge of the materials tortuos-
ity.

In 1998, Jörgen Hager (16) in his Ph. D. thesis at
Lund University (Sweden) derived an expression for
material permeability based on a capillary bundle
model in which pores are homogeneously distributed
in random directions.  Using the Hagen-Poiseuille
correlation for fluid flow in cylindrical geometries,
making substitutions with measurable parameters, and
combining with Darcy’s law, he derived an expres-
sion for material permeability in terms of total pore
volume, material density, pore volume distribution by
pore size, and material tortuosity.  All parameters but
tortuosity are obtainable from mercury porosimetry
tests.

As presented previously, Katz and Thompson also
derived an expression for material permeability based
on measurements obtainable from mercury
porosimetry.  Their expression does not depend on
knowledge of material tortuosity.  Therefore, combin-

ing the Hager and Katz-Thompson expressions
provides a means for determining tortuosity from
data collected by mercury porosimetry.

Obviously, if the Katz-Thompson value for
permeability is used for tortuosity, permeability must
first be determined appropriately.  This means that the
K-T point of inflection must have been accurately
identified.  Furthermore, for minimum error, the
value of σ/σ

o 
should be known and entered as a

parameter in the K-T data reduction routine.  How-
ever, the K-T method can be used to estimate σ/σ

o, 
but

estimation diminishes the reliability of the calculated
tortuosity value.

The dependency of tortuosity determinations on
permeability determinations means also that any
recalculation that affects the reported permeability
also affects the reported value for tortuosity.  There-
fore, if permeability is recalculated for any reason (a
better estimate of the inflection point, for example),
then the system should be allowed also to recalculate
and report tortuosity using the updated value of
permeability.

Material Compressibility
It has long been noted that for many materials the

intrusion curve at near maximum pressure takes a
sudden upward swing.  In some cases, the apparent
uptake of mercury by the sample actually is caused by
mercury filling the void in the sample cup produced
by the collapse or compression of the sample mate-
rial.  If the extrusion curve follows the intrusion curve
in this region, the material is demonstrating restitution
or elasticity and returning to its original shape or
volume.  If the extrusion curve fails to retrace the
intrusion curve, the material, to some extent, is
permanently deformed.  A pore filled with mercury
applies pressure to the pore walls essentially with the
same pressure as applied by the bulk mercury sur-
rounding the sample.  Therefore, structural collapse is
not likely caused by collapse of the open pore
structure, but more likely is due to voids that are
inaccessible to the mercury.  However, there is no
way  mercury porosimetry can determine whether the
upward swing in the intrusion curve  was caused by
material compression, void collapse, filling of open
pores, or a more common combination of these.

Compressibility data are more reliable when
working with non-porous materials and, in this
application, any apparent uptake of mercury in the
high or low pressure regions may be attributed to
material compression. However, before data reduc-
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tion can be performed, there must be available a
“blank run” file consisting (at least ideally) of a run
made with the same penetrometer that is to be used in
the compressibility test and on the same instrument
ports as will be used in the compressibility run. The
pressure range of the blank run must, at a minimum,
fully encompass the planned range to be used in the
compressibility measurement. This greatly improves
the accuracy of the data by eliminating any deviations
in the baseline caused by components in the system.

Quantifying compressibility consists of first
identifying the range of data in which compressibility
occurs, or in which the compressibility function is to
be determined.  The default range is the entire
intrusion curve and this may need to be changed by
having pre-knowledge of the desired range, or by
inspection of the intrusion curve after the analysis.
By the latter method, a second pass through the data
reduction routine is required if the calculation range is
changed from the pre-analysis values.

The compression function is expressed as a
quadratic equation derived from the change in
volume with pressure.  Assume that at each experi-
mental pressure, Pn,  the corresponding blank cor-
rected intrusion, V(Pn), can be computed using the
second order polynomial expression

V(Pn) = Vo + B*Pn + C*Pn2 . (23)

where Vo is the exact volume of the sample material
computed as the ratio of the       sample weight and
the sample density supplied by the user or,
alternatively, supplied as the pre-measured sample
volume by the user;  B is the linear pressure
coefficient of  volumetric compressibility; and C is
the quadratic pressure coefficient of volumetric
compressibility.

The instrument will determine the best fit of this
quadratic equation to the experimental data by
adjusting the B and C appropriately.  A plot of the
experimental data overlaid with the predicted data can
be inspected for goodness of fit.  If the two plots
closely agree, then the derived function expresses the
compression response of the material to pressure in
the range of calculation.

It is expected that the knowledgeable user will
need to fully take into account various limitations in
the art and technique.  A blank correction run will
provide a reference that will compensate for most of
these variables.  Perhaps the least controllable vari-

able is temperature increases which create a “ther-
mometer effect” in the penetrometer system and are
caused by compression of the hydraulic fluid  as
pressure is built. The amount of temperature increase
depends upon the exact rate and time pattern with
which the pressure is increased but can be as high as
50 C if maximally rapid pressurization of a small
penetrometer is done.

Relation of Mercury Porosimetry to Other
Porosimetry Techniques

Gas sorption and mercury porosimetry are
complementary techniques. Physical adsorption
techniques can extend the lower size measurement
down to about 0.00035 mm diameter, thus probing
the intraparticle microstructure. Mercury porosimetry
is paired with the gas sorption technique to obtain
porosity information in the large size range (greater
than about 0.3 mm diameter up to about 360 mm),
which is not attainable by gas sorption. When using
two different techniques (two very different models),
one should not expect necessarily to obtain the same
results in the overlapping or common range of both
instruments.  However, comparable results have been
reported (17) for some materials.

One potential difficulty in comparing porosity
data sets obtained in the smaller size range by mer-
cury porosimetry with data gathered in the same
range by gas sorption is that sample compression is a
possibility with mercury porosimetry.  If sample
compression occurs, an apparent uptake of mercury is
superimposed on the intrusion curve leading to an
erroneous indication of pore volume, and one not
reproduced by the gas adsorption analysis.

As was mentioned in the sections on volume and
density, mercury porosimetry data can be compared
with gas pycnometry data to reveal additional poros-
ity not detected by the mercury intrusion method
alone. Indeed, comparing data obtained by different
techniques for the same material characteristics can
reveal information not attainable by either method
alone.  The requirement, of course, is that the mea-
surement theories of both techniques be well under-
stood.
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GLOSSARY

Angle of contact: see Contact Angle

Apparent quantity: find under name of specific quan-
tity, i.e. Volume, Apparent

Archie’s Law:  An empirical equation relating the elec-
trical conductivity of a porous material and expressed
as

ρ
R
 = ρ

F
Aφ-m

where ρ
R
  is the electrical property of the rock, ρ

F
 the

electrical property of the fluid, φ  the porosity of the
medium, and A and m  depend on the geometry of the
pores.

Area, Incremental Specific:  The total area of pores with
the size class defined by the increment boundaries. This
value is calculated using incremental volume rather than
cumulative volume.  Therefore, the incremental pore
area between the boundaries i and j is calculated by

Aij = 4(Vj-Vi)/Dm,

where Dm is the mean diameter (see definition).

Area, Cumulative Pore:  The summation of pore area
over a range of pore sizes.  Pore area is calculated from
the geometry of a right circular cylinder beginning with
Cumulative Volume (as measured) and equals πD2h/4,
where D is the diameter of the pore and h is its depth.
Since the area of a right circular cylinder equals π Dh,
the relation between the volume and area is A= 4V/D.

Backbone: That part of the spanning cluster of con-
nected pores and voids that takes the most direct path
through the medium.

Backbone Formation:  Development of the main path
through which the fluid will percolate.

Bulk quantity: find under name of specific quantity, i.e.
Volume, Bulk

Capillarity: The action that causes the elevation or de-
pression of a liquid surface in contact with a solid.  It is
caused by the relative attraction of the liquid molecules
to each other and to the molecules of the solid.  Same
as capillary action.

Capillary Pressure: The pressure differential across the
meniscus; the driving force for capillary
penetration.

Characteristic Length:  The pore diameter calculated

from the pressure at which percolation through the po-
rous material first occurs.

Compact:  Verb form- To increase the bulk density of a
granular material by the compression.

Noun form- A tablet or briquette resulting from
compressing a granular or powdered material.

Conductivity Formation Factor: The ratio of the elec-
trical conductance of a rock permeated with brine to
the electrical conductance of brine.  The reduction in
conductivity is caused by the presence of the insulating
solid phase and therefore is related the porosity.  It also
is affected by pore tortuosity and interconnectivity.

Connectivity:  The degree to which pores, fractures, and
voids are joined to form continuous paths through a
medium.  Directly related to Percolation.

Contact angle: The angle between the liquid and the
solid surface at the liquid-solid-vapor interface and tan-
gent to the curve of the droplet. The contact angle of a
liquid on a smooth, homogeneous surface; depends on
the surface energy of solid and liquid.  The higher the
surface energy of the solid substrate, the better its
wettability and the smaller the contact angle.   Related
to the Surface Tension by the Young’s Law.

Cumulative quantity:  Total quantity accumulated (sum-
mation) over a range of operation (compare with Incre-
mental quantity).  For specific definitions, look under
the name of the specific quantity, i.e. Volume, Cumula-
tive.

Darcy:  A unit of permeability.  Equal to the flow of 1
ml of fluid of 1 centipoise viscosity in 1 second under a
pressure gradient of 1 atmosphere across a 1cm2 and l
cm long section of porous material.  Has units of area
(cm2). 1 darcy = 1x10 -12 m2 or 1x10 -8 cm2 .          1
millidarcy (md) = 1x10 -15 m 2 or 1x10 -11 cm2 .

Darcy’s Law:  A law describing the rate of  fluid flow
through a porous medium having specific physical prop-
erties.  Mathematically,

Q = k∆P/ηl

Where Q is the rate of  flow (ml/sec),  ∆P the pressure
gradient, η the fluid viscosity, and l the length (thick-
ness of sample) The material permeability (hydraulic
conductivity) k is

k = r2/8

where r is the radius of the pore.  Darcy’s Law is valid
only for steady-state, laminar fluid flow. See the Hagen-
Poiseuille equation.
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Density, Apparent (or Particle Density) is the mass
divided by the volume including both closed pores and
open pores.  This is in contrast to the mass per unit
volume of the individual particles, which is a higher
value.

Density, Bulk (or Packing Density)  are terms used in
powder technology.  Bulk density or packing density is
the mass of particles composing the bed divided by the
bulk volume of the bed.

Density, Packing see Density, Bulk

Density The mass of a substance per unit volume (D =
m/V).  Volume may be defined in different ways ac-
cording to how it is measured.  Therefore, the defini-
tion of density is determined by the definition of vol-
ume.   Definitions can vary somewhat from industry to
industry.

Density, Bulk: The mass of the bulk quantity divided
by the bulk volume; see Volume, Bulk.

Density, Envelope: The mass of the specimen divided
by the envelope volume; see Volume, Envelope.

Density, Particle (or Envelope Density) is the mass of
the particle divided by the volume of the particle in-
cluding closed pores but excluding open pores.

Density, True (or Substance Density) is the mass di-
vided by the solid volume or true skeletal volume.  It is
usually determined after the substance has been reduced
to a particle size so small that it accommodates no in-
ternal voids.

Density, Theoretical is similar to true density except
theoretical density includes the requirement that the solid
material has an ideal regular arrangement at the atomic
level.

Density, Skeletal is usually the mass divided by the skel-
etal volume remaining after the volume of all open pores
larger than 0.005 micrometers have been subtracted.

Diameter / Radius:  In mercury porosimetry, this is the
dimension of the circular (or other) pore model. For
every collected pressure point, there is a corresponding
diameter obtained from the Washburn equation.  Ra-
dius, when used, is obtained by dividing the calculated
diameter by two.

Diameter, Mean:  The average diameter within a class
or data range.  Over a given range of diameters (pres-
sures) from Di to Dj, the mean diameter is calculated as
Di-Dj/2.

Differential quantity: In general, the magnitude of the

change in a quantity, or difference.   Generally, the dif-
ference between two quantities, but in mercury
porosimetry, the differential quantity always will be pore
size (diameter or radius).  It is calculated by subtracting
the size of the pores corresponding to one pressure
boundary of the increment from that of the other pres-
sure boundary.  For specific definitions, look under the
name of the specific quantity, i.e. Volume, Differential.

Diffusion:  As used in this document, the transport of
mass by the spontaneous movement of particles (ions)
through the liquid filling the pores.

Distribution (number, area, and volume): In mercury
porosimetry, pore size calculated from pressure is the
independent variable and this represents the distribu-
tion range.  That which is distributed is the dependent
variable, either the number, area, or volume of pores at
each value throughout the range.  For example, the pore
volume distribution by pore sizes (diameter or radius).

Equilibration:  The state at which mercury has ceased
to flow into the pore space at the current pressure.

Fluid:  A substance having no resistance to deforma-
tion when subjected to a shearing force.

Formation Factor: See Conductivity Formation Fac-
tor:

Fractal: A shape that is composed of smaller replicas
of the same shape, that is, having self similarity.  A
simple example is a square area composed of small
squares that are themselves composed of smaller
squares, ad infinitum.  Characterized by a power law
distribution.

Geometric quantity:  A dimension of an object of regu-
lar geometry such as a sphere or cylinder.  For specific
geometries (shapes), look under the name of the shape,
i.e. “Volume, Geometric”

Greenware:  Ceramic ware that has not been fired.  Also
applied to powdered metal compacts prior to sintering.

Hagen-Poiseuille Equation:  An expression describ-
ing the laminar flow of fluid through a single cylindri-
cal tube (capillary or pore) under the influence of a pres-
sure gradient and as a function of fluid viscosity and
density, capillary length and diameter, and flow veloc-
ity.  Often expressed in terms of flow quantity, Q as

Q = V/t = (πr4/8η)(∆P/l)

Where V/t is the volume rate of flow, r the radius of the
capillary (pore), η the liquid viscosity, and ∆P/l the pres-
sure differential over a length 1 of capillary.  See Darcy’s
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Law.

Hydraulic Conductivity: Permeability in relation to the
fluid; unlike permeability, hydraulic conductivity takes
into account the particular fluid that is present in the
medium. See Permeability

Hydraulic Radius:  The ratio of volume to surface area
of a porous material.  Also, the ratio of the cross-sec-
tional area of flow to the perimeter of the channel.

Hysteresis: In mercury porosimetry, hysteresis is used
to describe the failure of the extrusion curve to retrace
the intrusion curve, that is, at the same pressure on the
two curves, the quantity of mercury contained in the
pore system differs.  The extrusion curve with no hys-
teresis will exactly retrace the intrusion curve, and with
hysteresis, will always have volume values greater than
the intrusion curve at the same pressure.  An error con-
dition exists if the extrusion curve dips below the intru-
sion curve. The two curves seldom close to form a hys-
teresis loop as is required for gas adsorption -desorp-
tion curves.

Incremental quantity:  A quantity summed between the
two boundaries that define the increment  (compare with
Cululative quantity).  For specific definitions, look
under the name of the specific quantity, i.e. Volume,
Incremental.

Interface: As used in this document, the boundary be-
tween any two phases, gas (vapor), liquid, or solid.
These include, vapor-liquid, vapor-solid, liquid-liquid,
liquid-solid, and solid-solid.

Interfacial Energy:  The free energy of the surfaces at
the interface of two phases resulting from differences
in the tendencies of each phase to attract its own mol-
ecules. Also known as surface energy.  See also, Sur-
face Tension and Surface Energy.

Intergranular porosity:  Void space between particles.
See Interstitial Space.

Internal Energy (Forces): That portion of the total en-
ergy of a substance that is due to the kinetic and poten-
tial energy of the individual molecules; for example,
that possessed by a compressed fluid.

Interstitial Space (Voids):  The void space formed be-
tween two or more particles packed together.

Katz-Thompson Method:  A method by which to deter-
mine the permeability of a porous medium using data
obtained by mercury porosimetry.

Lithogenesis:  The formation of rocks.

Log differential quantity:  The difference between
the logarithms of two quantities.  In mercury porosimetry
discussions, log differential quantities refer to quanti-
ties calculated using the log of the differential pore size
(diameter or radius).  For example, log(Di) - log(Dj).

Lognormal distribution:   A distribution in which the
log values of sizes are distributed in a normal distribu-
tion.

Macropore:  Pores with diameters exceeding 0.05 µm.

Meniscus: The free surface of a liquid-vapor boundary
near the walls of the containing vessel (a pore or capil-
lary) and which assumes a curvature due to surface ten-
sion.

Mesopore:  Pores with diameters between 0.002 µm
and 0.05 µm.

Micropore:  Pores with diameters equal to or less than
0.002 µm.

Millidarcy:  10-3 Darcy; see Darcy.

Model (Theoretical): A model, in the sense used in this
document, is a mathematical or physical system that
obeys specific conditions and whose behavior is used
to help understand an analogous physical system.  In
mercury porosimetry, one theoretical model is that of
system cylindrical pores.

Optimum path for Permeability:  The pore size at which
the product of intrusion volume and the cube of the
pore size is maximum.  The peak of the hydraulic con-
ductance function in the Katz-Thompson method.

Pascal: Unit of pressure.  To convert Pascals to other
units, use the table below.

To convert Pascals to… multiply by…

atmosphere 9.869 x 10-6

bar 1 x 10-5

dynes/cm2 10

kg/cm2 1.020 x 10-5

psi or lb/in2 1.4508 x 10-4

torr or mm Hg 7.5028 x 10-3

Percolate (Percolation): The movement of a fluid
through a porous medium.

Penetrometer: A combination of a sample holder (cup)
and the analytical mercury reservoir (stem) used in
mercury porosimetry.  Also called a dilatometer.
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Permeability: The capacity of a material to transmit
fluid. The conductance of fluid flow that a porous or
fractured medium exhibits.  Under special conditions,
also referred to as Hydraulic Conductivity.

Pore Cavity: Any void laying beneath the surface and
connected to the surface by a smaller void or pore.

Pore, Closed: Strictly, a pore that has no conduit to the
surface.  In regard to mercury porosimetry, a pore that
has no conduit to the surface of sufficient size for mer-
cury to invade at maximum pressure.

Pore, Ink Well: A pore system composed of a small
cylindrical pore that opens into a larger cylindrical pore.

Pore, Open: A pore that is on the surface or has a con-
duit to the surface of the particle or specimen.

Pore Throat (neck): The opening at the surface (some-
times called simply ‘pore’). Also, a pore through which
a larger pore (cavity) is accessed.

Porosity:  A dimensionless unit symbolized by φ and
equal to the ratio of the void volume to the total vol-
ume (V

 V
 /V

T
 ) of the porous medium, or  the fraction of

the total volume of a porous medium occupied by void
space.  It also may be considered the storage capacity
of a medium such as reservoir rock.

Power Law:  A distribution of the form y = c xn.  

Pressure:  In general, the force pre unit area, F/A.  In
mercury porosimetry, this value (measurement) is con-
sidered raw data, but actually is reduced to some extent
by head pressure correction and transducer offset cor-
rection.  Nevertheless, it is the most fundamental pres-
sure data used in further data reduction.  For every col-
lected pressure point, Pi, there is a corresponding col-
lected volume data point Vi.  In certain data reduction
routines, pressure data may be derived by interpolation
between two measured pressure data points.

Pressure, Threshold: The pressure at which fluid first
percolates through a porous medium.

PSIA: Units of absolute pressure.  Pounds per Square
Inch Absolute.  To convert PSIA to other units, use the
table below.

To convert PSIA to…. multiply by..

atmosphere 0.06805

bar 0.06893

dynes/cm2 6.8927 x 104

kg/cm2 7.0309 x 10-2

mtorr or micron Hg 5.171 x 104

Pa or N/m2 6.8927 x 103

torr or mm Hg 51.71

Radius / Diameter:  In mercury porosimetry, this is the
dimension of the circular (or other) pore model. For
every collected pressure point, there is a corresponding
diameter obtained from the Washburn equation.  Ra-
dius, when used, is obtained by dividing the calculated
diameter by two.

Saturation Zone (Saturated Zone): The region of pore
space completely filled with fluid.

Self-similarity:  Having the same properties at different
size scales.

Sinter:  In powder metallurgy, to form a coherent bonded
mass by heat and pressure without melting.

Surface Energy: The energy per unit area of surface.
Compare with definitions of Surface Tension and In-
terfacial Energy.

Surface Tension: The internal force acting on the sur-
face that tends to contract the surface into a configura-
tion of minimum surface area.  It is due to an unbalance
in molecular forces at the interface of two materials.
The difference in molecular forces between a liquid and
solid determines the contact angle.  Also, the work dW
necessary to increase the surface area by dA. Also
known as interfacial tension or interfacial force.  See
also, Surface Energy and Interfacial Energy.

Tortuosity: The ratio of the length of the path described
by the pore space to the length of the shortest path across
a porous mass; the minimum value is 1.

Tortuosity Factor:  Tortuosity factor is commonly used
in the area of heterogeneous catalysis and is the ratio of
tortuosity to constriction, where constriction is a func-
tion of the ratio of cross-sectional areas of the conduit.

Transport Properties:  The properties of a material that
are associated with the transport of mass through the
material.

Unsaturated Zone: The region of the pore space that is
partly filled with fluid.

Viscosity: A measure of a fluid’s ability to resist defor-
mation. High viscosity fluids flow more slowly than
low viscosity fluids.

Volume: The size of a specific region in three-dimen-
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sional space.

Volume, Bulk: Applied to finely divided samples and
granulated solid materials. Includes all pores, open and
closed, and includes interstitial space between particles.
In regard to a single solid specimen, often referred to as
envelope volume; see envelope volume.

Volume, Cumulative:  In mercury porosimetry, the total
volume accumulated or accounted for over the range of
pressures or pore sizes.  Considered raw data but may
have been blank-corrected.  For every cumulative vol-
ume data point (Vi) collected, there is a corresponding
pressure point (Pi) collected.

Volume, Differential Specific:  The incremental specific
volume divided by the difference between the pore size
at one boundary of the increment and the pore size at
the other boundary.  Incremental volume is used rather
than cumulative because the calculation involves an
incremental step in pore size and volume intruded and
not the cumulative volume intruded at a specific pore
size.

Volume, Envelope: The volume enclosed within a ‘form
fitting’ surface that covers or envelops a single solid
specimen of material.  It includes the volume of small
surface irregularities, open pores, and closed pores.
Compare with Volume, Bulk.

Volume, Geometric is a theoretically ideal volume, de-
rived from calculations with linear dimensions of regu-
lar shapes such as the radii (R) and heights (h) of cylin-
ders (V=πR2h), the radii of spheres (V = 4/3 π R3), and
the lengths (l), heights (h), and widths (w) of rectangu-
lar cubes (V = lwh).  It does not include surface irregu-
larities that exist on “real” objects, nor pores or voids.

Volume, Incremental:  For a given range of pressure
and cumulative volume data pairs, (Pi,Vi) to (Pj,Vj),
incremental volume is Vi-Vj (corresponding to a pres-
sure difference of Pi - Pj, which converts to a size range
from Di to Dj).  In certain data reduction routines, in-
cremental volume data may be calculated using values
derived by interpolation between two measured volume
data points.

Volume, Skeletal (or True Volume): The volume of the
solid material only.  Skeletal volume may be determined
by mercury porosimetry or helium pycnometry and must
be performed on either non-porous materials or mate-
rials with no closed pores. The skeletal volume as de-
termined by mercury porosimetry and helium
pycnometry may differ because mercury cannot intrude
into small micropores, therefore including these voids

in the reported skeletal volume.

Volume, Specific:  The volume (intrusion or extrusion,
cumulative or incremental) divided by the sample
weight.  This produced units of volume per unit weight
and normalizes the data for convenient comparison to
similar analyses using different quantities of sample
material.

Volume, True: see Volume, Skeletal

Washburn Equation: A mathematical expression of
dynamic equilibrium between external forces tending
to force a liquid into a capillary of size R and the inter-
nal forces repelling entry into the capillary.  Assuming
a circular cross-section for the capillary opening spanned
by a non-wetting liquid such a mercury, the equation
can be resolved in terms of the external pressure P and
the diameter of the capillary D, the smallest size into
which the liquid can be forced to enter at the prevailing
pressure.

Young’s law: An expression of the relationship of the
solid-gas, solid-liquid, and liquid-gas  interfacial ten-
sions and the contact angle.  Expressed mathematically
as
γ

s,g
 = γ

s,l + 
γ

l,g 
cos θ

where γ
s,g

 is the solid-gas interfacial tension, γ
s
,l the solid-

liquid interfacial tension,
 
γ

l,g 
the liquid gas interfacial

tension, and θ the contact angle

Young-Laplace Equation:  An expression of the
pressure differential (capillary pressure) across the
liquid-gas interface (the meniscus).  At equilibrium,
∆p = γ (1/R

1
 + 1/R

2
)

where R
1
 and R

2
 are the radii of curvature of the inter-

face and γ  is the surface tension of the liquid-gas inter-
face.  Within pores, the two radii are assumed to be
equal to the pore size, D/2. Therefore, capillary pres-
sure across the interface in a pore of size D is given by

∆p =  γ (2/D + 2/D) = 4γ /D.

NOTE: The expression for capillary pressure is derived
under the assumption that the fluids are in static equi-
librium, i.e. there is no flow into or from the pore.
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